Hybrid AO's and polyatomic MO's

CH101 Fall 2012 Boston University

Figures on slides 4-9 are used with permission from Clayden et al., Organic Chemistry (Oxford University Press, 2000), © 2007 Oxford University Press.

Figures on slides 23, 25 and 39 are used with permission from Mahaffy et al., Chemistry: Human Activity, Chemical Reactivity (Nelson, 2011), © 2011 Nelson Education Ltd.

Hybridized AO's account for central atom electron-pair geometry

Central atom AO mixing: Hybrid AO's

Unmixed AO's have the wrong central atom geometry

the 90° angles in PH₃ and H₂S come from the overlap of the hydrogen 1s AO with the p AO of the phosphorus or sulfur

An s and a p AO make two sp hybrid AO's

 180° angle, for SN = 2 Two p's are unchanged on each atom

sp hybrids account for linear geometry

 180° angle, for SN = 2 Two p's are unchanged on each atom

An s and two p AO's make three sp² hybrid AO's

 120° angle, for SN = 3 One p is unchanged on each atom

sp² hybrids account for trigonal planar geometry

 120° angle, for SN = 3 One p is unchanged on each atom

An s and three p AO's make four sp³ hybrid AO's

109° angle, for SN = 4 sp³ hybrids account for **tetrahedral geometry**

Which hybridization to use?

steric number → electron-pair geometry → hybridization
steric number = attached atoms + lone pairs

	steric number	electron-pair geometry	hybridization	molecular geometry
H ₂ O	4	tetrahedral	sp ³	bent at 109°
NH ₃	4	tetrahedral	sp ³	trigonal pyramidal
CH ₄	4	tetrahedral	sp ³	tetrahedral
SO ₂	3	trigonal planar	sp ²	bent at 120°
BH ₃	3	trigonal planar	sp ²	trigonal planar
CO ₂	2	linear	sp	linear at 180°

Examples

 CO_2 , carbon dioxide H_2CO , formaldehyde HCO_2^- , formate SO_2 , sulfur dioxide

Polyatomic MO recipe

Overview

- σ framework of single bonds and lone pairs
- π framework of additional bond pairs
- π framework can be delocalized (spread) over more than two atoms.

Polyatomic MO recipe

- 1. Use the Lewis structure to get
 - the number of electron pairs
 - make hybrid AO's on each atom (except H)
- 2. Sketch the σ framework and place pairs
 - in each bonding σ MO
 - in each nonbonding hybrid AO
- 3. Sketch the π framework MO's,
 - mark as bonding, nonbonding, antibonding
 - place remaining pairs (Auf Bau)
 - get the π bond order

σ framework recipe

- Hybridization of terminal atoms the same as their central atom
- Terminal H never hybridized
- One pair in each hybrid AO σ bonding MO
- One pair in each non-bonded hybrid AO

sp hybrids overlap to make
two sp σ bonding MO's,
leaving two sp nonbonding AO's.

These can hold ...

sp hybrids overlap to make
two sp σ bonding MO's,
leaving two sp nonbonding AO's.

These can hold ...

sp hybrids overlap to make
two sp σ bonding MO's,
leaving two sp nonbonding AO's.
These can hold 4 pairs of electrons.

sp hybrids overlap to make
two sp σ bonding MO's,
leaving two sp nonbonding AO's.
These can hold 4 pairs of electrons.
The remaining 4 pairs are in the ...

$CO_2 \pi$ framework

π framework recipe

- Unused p AO's form same number of π MO's
- Number of loops and AO overlap determine whether π MO is ...
 - bonding (π)
 - nonbonding (π^n)
 - antibonding (π*)

CO_2 π framework

4 pairs are in the (delocalized) π framework

2 pairs in π (bonding) and 2 pairs in π^n (nonbonding);

bond order 2

21

H₂CO sp² σ framework

6 pairs in Lewis structure, 5 pairs in σ framework, and so 1 pair in (localized) π framework.

H₂CO sp² σ framework

6 pairs in Lewis structure, 5 pairs in σ framework, and so 1 pair in (localized) π framework.

(b) The C-H σ bonds are formed by overlap of C atom sp^2 hybrid orbitals with H atom 1s orbitals. The σ bond between C and O atoms arises from overlap of sp^2 orbitals.

$H_2CO \pi$ framework

1 pair in (localized) π framework

1 pair in π (bonding); bond order 1

$H_2CO \pi$ framework

1 pair in (localized) π framework

(c) The C-O π bond comes from the sideways overlap of p orbitals on the two atoms.

1 pair in π (bonding); bond order 1

HCOO⁻ sp² σ framework

9 pairs in Lewis structure, 7 pairs in σ framework, and so 2 pairs in (delocalized) π framework.

HCOO⁻ π framework

2 pairs in (delocalized) π framework

1 pair in π (bonding) and 1 pair in π^n (nonbonding);

bond order 1

9 pairs in Lewis structure, 7 pairs in σ framework, and so 2 pairs in (delocalized) π framework.

SO_2 π framework

2 pairs in (delocalized) π framework

1 pair in π (bonding) and 1 pair in π^n (nonbonding); bond order 1

SO₂ correlation diagram

Do these on your own

HCOOH, formic acid allyl: $[H_2C=CH-CH_2]^-$, anion; $[H_2C=CH-CH_2]^+$, cation $H_2C=C=CH_{2,}$ allene $H_2C=CH-CH=CH_2$, 1,3-butadiene O_3 , ozone

For each one,

- Write the Lewis structure
- Sketch the σ framework and assign its pairs
- Sketch the π framework MO's, identify localization or delocalization, bonding, nonbonding, antibonding, and assign its pairs, and get the π bond order

HCOOH, formic acid

Formate, $HCOO^-\pi$, is planar and has

- 9 pairs
- 7 pairs in σ framework
- 1 pair in a delocalized bonding π_1 orbital
- 1 pair in a **delocalized nonbonding** π_2^n orbital

What about formic acid?

- 9 pairs
- 8 pairs in σ framework
- 1 pair in localized bonding π₁ orbital

H₂C=CH-CH₂, allyl (radical)

What about allyl? Use -CH₂ sp², to have **increased delocalization**:

- 8 ½ pairs
- 7 pairs in σ framework
- 1 pair in delocalized bonding π₁ orbital
- $\frac{1}{2}$ pair (1 electron) in **delocalized nonbonding** π_2^n orbital

[H₂C=CH-CH₂]⁺, allyl cation

What about allyl cation?

- 8 pairs
- 7 pairs in σ framework
- 1 pair in **delocalized bonding** π_1 orbital

[H₂C=CH-CH₂]⁻, allyl anion

What about allyl anion? If $-CH_2$ is sp^3 , then

- 9 pairs
- 8 pairs in σ framework
- 1 pair in localized bonding π₁ orbital

If
$$-CH_2$$
 is sp^2 , then

- 7 pairs in σ framework
- 1 pair in delocalized bonding π₁ orbital
- 1 pair in **delocalized nonbonding** π_2^n orbital

Increased delocalization makes –CH₂ is sp² more stable (extension to recipe)

H₂C=C=CH₂, allene

What about allene?

- 8 pairs
- 6 pairs in σ framework
- 2 pair in **two localized bonding** π_1 orbitals

H₂C=CH-CH=CH₂, 1,3-butadiene

What about 1,3-butadiene?

- 11 pairs
- 9 pairs in σ framework
- 1 pair in **delocalized bonding** π_1 orbital
- 1 pair in **delocalized bonding** π_2 orbital

O_{3} , ozone

What about ozone?

- 9 pairs
- 7 pairs in σ framework
- 1 pair in **delocalized bonding** π_1 orbital
- 1 pair in **delocalized nonbonding** π_2^n orbital

Ozone is polar. Why?

The two electrons in the nonbonding MO are each only on the terminal O's!

O_3 ozone σ and π frameworks

 σ and π bonding in ozone