Hybrid AO's and polyatomic MO's CH101 Fall 2012 Boston University Figures on slides 4-9 are used with permission from Clayden et al., Organic Chemistry (Oxford University Press, 2000), © 2007 Oxford University Press. Figures on slides 23, 25 and 39 are used with permission from Mahaffy et al., Chemistry: Human Activity, Chemical Reactivity (Nelson, 2011), © 2011 Nelson Education Ltd. # Hybridized AO's account for central atom electron-pair geometry #### Central atom AO mixing: Hybrid AO's Unmixed AO's have the wrong central atom geometry the 90° angles in PH₃ and H₂S come from the overlap of the hydrogen 1s AO with the p AO of the phosphorus or sulfur ## An s and a p AO make two sp hybrid AO's 180° angle, for SN = 2 Two p's are unchanged on each atom ## sp hybrids account for linear geometry 180° angle, for SN = 2 Two p's are unchanged on each atom ## An s and two p AO's make three sp² hybrid AO's 120° angle, for SN = 3 One p is unchanged on each atom ## sp² hybrids account for trigonal planar geometry 120° angle, for SN = 3 One p is unchanged on each atom ## An s and three p AO's make four sp³ hybrid AO's 109° angle, for SN = 4 sp³ hybrids account for **tetrahedral geometry** #### Which hybridization to use? steric number → electron-pair geometry → hybridization steric number = attached atoms + lone pairs | | steric
number | electron-pair
geometry | hybridization | molecular
geometry | |------------------|------------------|---------------------------|-----------------|-----------------------| | H ₂ O | 4 | tetrahedral | sp ³ | bent at 109° | | NH ₃ | 4 | tetrahedral | sp ³ | trigonal pyramidal | | CH ₄ | 4 | tetrahedral | sp ³ | tetrahedral | | SO ₂ | 3 | trigonal planar | sp ² | bent at 120° | | BH ₃ | 3 | trigonal planar | sp ² | trigonal planar | | CO ₂ | 2 | linear | sp | linear at 180° | #### Examples CO_2 , carbon dioxide H_2CO , formaldehyde HCO_2^- , formate SO_2 , sulfur dioxide #### Polyatomic MO recipe #### Overview - σ framework of single bonds and lone pairs - π framework of additional bond pairs - π framework can be delocalized (spread) over more than two atoms. #### Polyatomic MO recipe - 1. Use the Lewis structure to get - the number of electron pairs - make hybrid AO's on each atom (except H) - 2. Sketch the σ framework and place pairs - in each bonding σ MO - in each nonbonding hybrid AO - 3. Sketch the π framework MO's, - mark as bonding, nonbonding, antibonding - place remaining pairs (Auf Bau) - get the π bond order #### σ framework recipe - Hybridization of terminal atoms the same as their central atom - Terminal H never hybridized - One pair in each hybrid AO σ bonding MO - One pair in each non-bonded hybrid AO sp hybrids overlap to make two sp σ bonding MO's, leaving two sp nonbonding AO's. These can hold ... sp hybrids overlap to make two sp σ bonding MO's, leaving two sp nonbonding AO's. These can hold ... sp hybrids overlap to make two sp σ bonding MO's, leaving two sp nonbonding AO's. These can hold 4 pairs of electrons. sp hybrids overlap to make two sp σ bonding MO's, leaving two sp nonbonding AO's. These can hold 4 pairs of electrons. The remaining 4 pairs are in the ... ### $CO_2 \pi$ framework #### π framework recipe - Unused p AO's form same number of π MO's - Number of loops and AO overlap determine whether π MO is ... - bonding (π) - nonbonding (π^n) - antibonding (π*) #### CO_2 π framework **4 pairs are** in the (delocalized) π framework 2 pairs in π (bonding) and 2 pairs in π^n (nonbonding); bond order 2 21 ### H₂CO sp² σ framework 6 pairs in Lewis structure, 5 pairs in σ framework, and so 1 pair in (localized) π framework. ### H₂CO sp² σ framework 6 pairs in Lewis structure, 5 pairs in σ framework, and so 1 pair in (localized) π framework. **(b)** The C-H σ bonds are formed by overlap of C atom sp^2 hybrid orbitals with H atom 1s orbitals. The σ bond between C and O atoms arises from overlap of sp^2 orbitals. #### $H_2CO \pi$ framework 1 pair in (localized) π framework 1 pair in π (bonding); bond order 1 #### $H_2CO \pi$ framework #### 1 pair in (localized) π framework (c) The C-O π bond comes from the sideways overlap of p orbitals on the two atoms. 1 pair in π (bonding); bond order 1 ### HCOO⁻ sp² σ framework 9 pairs in Lewis structure, 7 pairs in σ framework, and so 2 pairs in (delocalized) π framework. #### HCOO⁻ π framework 2 pairs in (delocalized) π framework 1 pair in π (bonding) and 1 pair in π^n (nonbonding); bond order 1 9 pairs in Lewis structure, 7 pairs in σ framework, and so 2 pairs in (delocalized) π framework. #### SO_2 π framework 2 pairs in (delocalized) π framework 1 pair in π (bonding) and 1 pair in π^n (nonbonding); bond order 1 #### SO₂ correlation diagram #### Do these on your own HCOOH, formic acid allyl: $[H_2C=CH-CH_2]^-$, anion; $[H_2C=CH-CH_2]^+$, cation $H_2C=C=CH_{2,}$ allene $H_2C=CH-CH=CH_2$, 1,3-butadiene O_3 , ozone For each one, - Write the Lewis structure - Sketch the σ framework and assign its pairs - Sketch the π framework MO's, identify localization or delocalization, bonding, nonbonding, antibonding, and assign its pairs, and get the π bond order #### HCOOH, formic acid #### Formate, $HCOO^-\pi$, is planar and has - 9 pairs - 7 pairs in σ framework - 1 pair in a delocalized bonding π_1 orbital - 1 pair in a **delocalized nonbonding** π_2^n orbital #### What about formic acid? - 9 pairs - 8 pairs in σ framework - 1 pair in localized bonding π₁ orbital #### H₂C=CH-CH₂, allyl (radical) What about allyl? Use -CH₂ sp², to have **increased delocalization**: - 8 ½ pairs - 7 pairs in σ framework - 1 pair in delocalized bonding π₁ orbital - $\frac{1}{2}$ pair (1 electron) in **delocalized nonbonding** π_2^n orbital #### [H₂C=CH-CH₂]⁺, allyl cation #### What about allyl cation? - 8 pairs - 7 pairs in σ framework - 1 pair in **delocalized bonding** π_1 orbital #### [H₂C=CH-CH₂]⁻, allyl anion What about allyl anion? If $-CH_2$ is sp^3 , then - 9 pairs - 8 pairs in σ framework - 1 pair in localized bonding π₁ orbital If $$-CH_2$$ is sp^2 , then - 7 pairs in σ framework - 1 pair in delocalized bonding π₁ orbital - 1 pair in **delocalized nonbonding** π_2^n orbital **Increased delocalization** makes –CH₂ is sp² more stable (extension to recipe) ## H₂C=C=CH₂, allene What about allene? - 8 pairs - 6 pairs in σ framework - 2 pair in **two localized bonding** π_1 orbitals #### H₂C=CH-CH=CH₂, 1,3-butadiene What about 1,3-butadiene? - 11 pairs - 9 pairs in σ framework - 1 pair in **delocalized bonding** π_1 orbital - 1 pair in **delocalized bonding** π_2 orbital #### O_{3} , ozone What about ozone? - 9 pairs - 7 pairs in σ framework - 1 pair in **delocalized bonding** π_1 orbital - 1 pair in **delocalized nonbonding** π_2^n orbital Ozone is polar. Why? The two electrons in the nonbonding MO are each only on the terminal O's! #### O_3 ozone σ and π frameworks σ and π bonding in ozone